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Model theory is a branch of logic that typically studies mathe-

matical structures from the perspective of first-order logic. Com-

municating the what and why is often challenging, but today we

will stick to familiar structures, namely the integers Z, the ratio-

nals Q, and the reals R, with Z ⊂ Q ⊂ R. We will talk about these

structures, these models, using the language of rings: three bi-

nary functions plus +, times · and subtraction −. For good

measure we will use names for 0 and 1. It is irresistible to use

shortcuts such as 2 for 1 + 1 and x2 for x times x and it makes

things readable.



The game for us today, and for Julia Robinson in her marvelous

research, is to see what is expressible, what notions we can de-

fine, for our three rings using the language of rings to create

formulae using variables, quantifiers “for all” ∀ and “there exist”

∃ , together with finite conjunctions ∧, negations, and implica-

tions ⇒.

Actually we won’t fuss over formalities: definability has a specific

meaning in our setting and examples will guide our understand-

ing better than technicalities.

For example, each ring in our trio has a natural ordering, but

< is not in the language of rings. No worry, we can define <

in each case, by showing that we can pick out the nonnegative

elements in our given structures.



For R this is easy: a real number r is non-negative just in case

it has a square root, so we can say:

r is non-negative if and only if ∃s(s2 = r).

The rules of definability here require that such an s be found in

the ambient structure R. And it can be.

What about the same question for Z: can we find a condition

that holds exactly when an integer is non-negative? Well, squares

are non-negative but unlike in the real numbers, not every non-

negative integer is a square in Z, e.g., 2.



Here comes our first call to number theory: Lagrange’s Theorem

states that every non-negative integer is a sum of four squares

(again, squares of integers). So for an integer n, we have n is

nonnegative if and only if ∃x1∃x2∃x3∃x4(n = x2
1 + x2

2 + x2
3 + x2

4).

Again the xi’s must be integers since our definition is meant to

work inside Z,. Thus Lagrange gives a definition of the natural

numbers N inside Z. (It turns out the same approach works to

define the non-negative rationals inside Q.)

Something to think about: how to define “ p is prime, or“ n is

composite,” or “x is (or is not) a power of 2” in Z.



Quantifier complexity. In the examples above, the defining for-

mulae only required the use of ∃, but as we will soon see, things

are not always so easy. We could say a specific polynomial has

a root, say ∃x(x3 + x2 − 3x + 1 = 0) but suppose now we want

to say every monic polynomial of degree 3 has a root. One way

is to say ∀a∀b∀c∃x(x3 + ax2 + bx + c = 0), which is “universal-

existential” or “∀∃”. There are three ∀’s here but what matters

more is the number of alternations. Thus this statement is more

complicated than the formula which picked out non-negative el-

ements. And things can get worse, in general much worse, and

formulas can have many (finite) alternations of quantifiers, truly

a nightmare. But not here, not today.



Already three alternations can be mystifying, either ∀∃∀ or ∃∀∃.
One reason the ε − δ definition of limit in calculus is hard to

fathom, it seems to me, is the alternation of quantifiers: to say

that the limit of f(x) equals L as x approaches a is an ∀∃∀:
∀ε∃δ∀x(ε > 0⇒ (δ > 0 ∧ (|x− a| < δ ⇒ |f(a)− L| < ε)

David Kazhdan: Often the experience of learning model theory

is similar to the one of learning physics: for a while everything is

so simple and so easily reformulated in familiar terms that “there

is nothing to learn” but suddenly one find himself in a place when

Model theoreticians “jump from a tussock to a hummock” while

we mathematicians don’t see where to put a foot and are at a

complete loss.



Given an element of Q, how can one recognize whether it is an
integer? Hmmm. Write it in lowest terms and check to see if
the denominator is 1 (or −1). But how to find a single formula
in our language which is true of any rational number x just in
case x is an integer? MUCH harder.

Theorem (Julia Robinson 1949 ) Z is definable in Q.

t is an integer in Q if and only if

∀a∀b({∃X∃Y ∃Z(2+bZ2 = X2+aY 2))∧∀M [(∃X∃Y ∃Z(2+abM2+
bZ2 = X2 + aY 2) ⇒ (∃X∃Y ∃Z(2 + ab(M + 1)2 + bZ2 = X2 +
aY 2)]} ⇒ (∃X∃Y ∃Z(2 + abt2 + bZ2 = X2 + aY 2)))



With some effort this can be unpacked and shown to be equiva-

lent to an ∀∃∀ formula. One example (thanks to Koenigsmann) :

t is an integer in Q if and only if

∀a∀b∃a1∃a2∃a3∃a4∃a5∃a6∃a7∀b1∀b2∀b3∀b4∀b5∀b6
(f(t, a, b, a1, a2, a3, a4, a5, a6, a7, b1, b2, b3, b4, b5, b6) = 0), where the

f here is a polynomial with integer coefficients in 16 variables.



More digestible are the ingredients of her proof. As we used
Lagrange’s Theorem earlier, Robinson drew on number theory,
in particular Hasse’s work on representing integers via quadratic
forms. For a given prime p, this allowed her to produce a crite-
rion for when a denominator of a fraction is not divisible by p.
But there are infinitely many primes and our language doesn’t al-
low infinite conjunctions. Roughly speaking she was able to deal
with the prime 2 and to group the criteria for odd primes accord-
ing to congruence class mod 4, in combination with some use
of the Legendre symbol. This brought the matter of checking
infinitely many primes down to looking at finitely many classes of
primes, hence making the result definable. Her proof is readable,
requiring nothing more sophisticated than the definition of the
Legendre symbol. Also quite accessible is the account by Flath
and Wagon in the Math Monthly.



Undecidability phenomenon

Why should we care about defining Z in Q? In 1931 Godel

proved a profound result about Z, called undecidability, showing

it is provably impossible to list all the true facts about Z in the

language of rings. (Motto: “number theory is hard!”) JR’s re-

sult transfers this fact to all true facts about Q. This is typical

of many undecidability results: link the question to Z.

In contrast, Tarski (JR’s advisor) showed that R is decidable. As

a corollary, neither Z nor Q is definable in R. Much more has

been shown about what is definable in R.



A related question, and a central source of JR’s fame, is Hilbert’s
10th problem. Can one decide whether a polynomial over the
integers in several variables has a solution? If it has a solution,
then a search will find it. If it doesn’t have a solution, how will
we ever know? JR worked on this for decades, as did others (no-
tably Martin Davis and Hilary Putnam) . They obtained useful
criteria. JR showed that if they could find a single such equa-
tion whose solution set grew exponentially then undecidability
was proved. In 1970 Yuri Matiasevich provided the final, crucial
piece, thus showing that this problem is undecidable. Indeed,
any listable set of integers is the set of solutions of some such
equation.
However, this leaves open whether Hilbert’s 10th problem is true
or false if we replace integers by rationals, since the definition JR
gave of the integers in the rationals is complicated. If it were ex-
istential, then the result would transfer from integers to rationals.



Progress?

Definability and decidability questions have been asked, and some

answered, in the intervening years. There have been many

players, including Leonard Lipshitz, Jan Denef, Lou van den

Dries, Kirsten Eisentraeger, Jennifer Park, Alexandra Schlapen-

tokh, Barry Mazur, J.-L. Colliot-Thelene, Hector Pasten, Carlos

Videla....



In 2009 (60 years after JR’s work) Bjorn Poonen improved the

definition down to ∀∃, two alternations of quantifiers!

t is an integer in Q if and only if

(∀a∀b)(∃a1∃a2∃a3∃a4∃b1∃b2∃b3∃b4∃x1∃x2∃x3∃x4∃y1∃y2∃y3, ∃y4∃n)((a+

a2
1 + a2

2 + a2
3 + a2

4)(b+ b21 + b22 + b23 + b24)((x2
1− ax

2
2− bt

2
3 + abx2

4−
1)2 +(y2

1−ay
2
2−by

2
3 +aby2

4−1)2 +n2(n−1)2(n−2309)2 +(2x1 +

2y1 + n− t)2)) = 0.

Poonen’s result involved number theory yet again, including Hasse-

Minkowski local-global results and quaternion algebras.



And in 2016 Jochen Koenigsmann brought it down to universal

quantifiers only!

There is an integer n and a polynomial g(t, x1, ..., xn) such that

t is an integer in Q if and only if ∀x1, ..., ∀xn(g(t, x1, ..., xn) 6= 0).

Koenigsmann’s proof involves the earlier ingredients, together

with existential definitions of certain Jacobson radicals and some

quantifier manipulations.



Still open: Hilbert’s 10th problem for Q.
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